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ABSTRACT  
 

Previous studies have shown that the anterior thalamic nuclei (ATN) contain a large 

population of head direction cells, which fire as a function of an animal’s directional orientation 

in an environment, thereby providing a compass-like representation guiding navigation. Recent 

work has suggested that directional orientation information stemming from the ATN is critical 

for the generation of hippocampal and parahippocampal spatial representations, and may 

contribute to the establishment of unique spatial representations in radially oriented tasks such as 

the radial arm maze. While studies have confirmed that ATN lesions impair the acquisition of 

new spatial information in variants of the radial maze, few have attempted to dissociate its 

unique contributions to acquisition vs. retrieval and spatial reference vs working memory in 

radial tasks. Here, we addressed these questions by training rats in a radial arm maze procedure 

to asymptotic levels, and after 24hrs, animals were administered muscimol inactivation of the 

ATN before a 4 trial probe test. We report impairments in retrieval of both spatial reference and 

working memory, suggesting a general absence of improved navigation across post-inactivation 

training trials. Taken together, the results above suggest that the ATN modulates the retrieval of 
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previously acquired allocentric spatial information in the radial-arm maze, but also suggests a 

critical role in the online guidance of accurate spatial behavior. The results are discussed in 

relation to the thalamo-cortical circuits involved in spatial information processing. 
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Introduction 

 The ability to navigate depends on neural systems involved in tracking an animal’s 

moment-to-moment changes in directional orientation and spatial location when moving from 

one place to another (McNaughton et al., 2006; Moser et al., 2008; Taube, 2007). Previous 

studies have shown that a critical component of the neurobiology of spatial orientation is the 

anterior thalamic nuclei (ATN), which is embedded within the classic Papez circuit and has 

strong interconnections with diencephalic subcortical nuclei as well as hippocampal, 

parahippocampal, parietal, and retrosplenial cortices (Aggleton et al., 2010; Clark & Harvey, 

2016; Wilber et al., 2015). The ATN contain a large proportion of neurons that are modulated by 

an animal’s directional heading, called “head direction cells” (Jankowski et al., 2015; Mizumori 

& Williams, 1993; Taube, 2007; Tsanov et al., 2011). The directional orientation of ATN head 

direction cells are strongly influenced by allothetic spatial stimuli such as environmental 

landmarks, in the absence of stable environmental features, the orientation of head direction cells 

can be maintained by self-movement cues such as vestibular, proprioceptive, and motor stimuli 

(Clark & Taube, 2009; Clark et al., 2012; Shinder & Taube, 2011; Yoder et al., 2011).  

The role of the ATN and head direction cell activity in spatial memory has received 

considerable attention, but its precise functions are poorly understood (Aggleton et al., 2010; 

Clark & Harvey, 2016). One hypothesis suggests that directional signals conveyed via the ATN 

may influence the generation and/or stability of hippocampal and parahippocampal spatial 

representations (McNaughton et al., 1991; Yoganarasimha et al., 2006). Supporting this 

hypothesis, experiments have shown that inactivation or lesions of the ATN abolish 

parahippocampal grid cell activity (Winter et al., 2015), and lesions of the ATN reduce the 
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spatial specificity of hippocampal place cells (Calton et al., 2003). Further, recent studies have 

demonstrated a tendency for place cells and grid cells to establish unique spatial firing patterns in 

radially oriented environments or in environments with opposed directions, but form similar 

firing patterns in parallel environments with similar directional orientations (Derdikman et al., 

2009; Fuhs et al., 2005; Grieves et al., 2016; Speirs et al., 2015). This observation points to the 

possibility that representations of directional orientation, possibly based on ascending thalamic 

head direction signals to the hippocampal formation, might facilitate the generation of distinct 

spatial representations in radial environments (Grieves et al., 2016; Sanchez et al., 2016). 

Whether the ATN and head direction cell activity is involved in disambiguating locations 

in radially oriented environments has been investigated in recent studies (reviewed in Clark & 

Harvey, 2016). For instance, Yoder and Kirby (2014) measured the spatial behavior of vestibular 

deficient (otoconia knockout) mice, an animal model previously shown to impair ATN head 

direction cell signals (Yoder & Taube, 2009), in a reference memory variant of the radial arm 

and open field (Barnes maze) tasks. While the authors reported that the vestibular mice exhibited 

spatial memory deficits in the radial arm maze, animals were unimpaired in the open field task. 

Experiments in which the ATN has been specifically targeted by neurotoxic lesions and behavior 

subsequently monitored in radial maze tasks are generally consistent with the results of Yoder & 

Kirby (Aggleton et al., 1996; Beracochea et al., 1989; Mair et al., 2003; Mitchell, & Dalrymple-

Alford, 2005; 2006; Wolff et al., 2008; for review, see Yoder & Taube, 2014). Nevertheless, 

many of these studies have utilized procedures in which working memory and the acquisition of 

non-spatial strategies are favored over spatial reference memory (Dubreuil et al., 2003; Olton & 

Samuelson, 1976). Further, the role of the ATN in the retrieval of previously learned spatial 

information has received limited attention, and is complicated by the fact that while some studies 
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have reported retrieval deficits in animals after post-acquisition lesions of the ATN (Alexinsky, 

2001; Warburton et al., 1999), others have reported that the expression of reference memory for 

spatial locations can be maintained after ATN disruption (Stackman et al., 2012; Sutherland & 

Rodriguez, 1989).  

In the present study we aimed to evaluate the role of the ATN in spatial behavior in the 

radial arm maze. We adopted a radial maze procedure in which two maze arms were consistently 

baited, thus allowing evaluation of both working and reference memory. To determine whether 

the ATN contributes to the retrieval of spatial memory in radial environments, we first pre-

trained rats in the radial arm maze, and then inactivated the ATN with a local infusion of 

muscimol. Here, we report that inactivation of the ATN causes deficits in the expression of a 

previously acquired spatial representation in the radial arm maze, and produces impairments in 

both working and reference memory. The results suggest a critical role for the ATN in the 

retrieval and online guidance of spatial behavior in radially oriented environments. 

 

Methods 

Subjects. Subjects were 12 male hooded Long-Evans rats (Harlan, Indianapolis, IN) that 

were approximately 160 days of age at the beginning of the experiments. All animals were pair-

housed in plastic cages on a reverse 12 h light:dark cycle with food and water available ad 

libitum. During habituation-training and experiments, rats were placed on a restricted food diet to 

maintain 90% of their ad libitum weight. Rats were given access to water ad libitum. The 

Institutional Animal Care and Use Committee at the University of New Mexico approved all 

procedures for the studies reported here.            
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Surgery. Twelve rats were surgically implanted with custom fabricated bilateral cannula 

that targeted the anterior thalamus. The custom cannulas were made of two 26-gauge stainless 

steel outer cannula and 33-gauge inner dummy cannula. Animals were anesthetized with 

isoflurane and placed in a stereotaxic frame with atraumatic ear bars. The head was adjusted in 

the frame to achieve flat skull coordinates. Anesthesia was maintained via an inhalation nose 

cone affixed to the mouth bar on the frame. Lidocaine (2%) was used as a local anesthetic 

underneath the skin above the skull. Under sterile conditions, a midline incision was made, and 

the skull exposed. The outer cannula were targeted just above the ATN such that the inner 

infusion cannula, which protruded ~1mm below the outer cannula, would be centrally placed 

within the ATN at the following coordinates relative to bregma: anterior-posterior -1.74 mm, 

medial-lateral 1.25 mm (2.48 mm between two cannula), dorsal-ventral (DV) -5.23 mm (DV 

coordinate measured from skull surface) and were held in place using dental acrylic. Coordinates 

were based on plates from Paxinos & Watson (1998) and previous histological assessment. After 

completion of the implantations, the skin was cleaned and sutured. The rats were given 

subcutaneous injections of buprenex (0.03 mg/ml concentration and a 0.1mg/kg dosage) right 

after surgery and once a day for two days. Following surgery, rats were single-housed to prevent 

damage to the implant. All rats were given 7 days to recover with unlimited access to food and 

water, followed by 7 days of food restriction prior to returning to the experiment.  

Radial Arm Maze. The radial arm maze consisted of eight black Plexiglas arms (each 

40.1cm × 9.30cm, separated by 45° from each other) that radiated out from a center platform (25 

cm in diameter). One recessed reward cup was located on a platform (20cm x 30cm) at the distal 

end of each arms. The maze was located near a corner of a testing room with many extra-maze 

cues, including a sink, filing cabinet, chair, and wall posters. A transparent plastic cylinder (25 
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cm in diameter) located in the center of the maze was used to restrict the rats to that region of the 

maze before the initiation of a training trial. A camera was positioned above the maze and digital 

videos were obtained for each testing session for off-line analysis. 

Habituation Trials. Rats first underwent 10 min habituation training trials on the radial 

arm maze over 3 consecutive days. During habituation, all of the recessed cups were baited with 

a food reward (quarter piece of dry cereal). In a trial, rats were first placed in the transparent 

cylinder located at the center of the maze for 15-30 seconds, followed by the removal of the 

cylinder, thereby allowing the rat to explore the maze and consume food from the food cups for 

the remaining time. 

 Acquisition Trials. Acquisition training occurred over 11 days in blocks of four trials per 

day. In this phase of training, only two of the eight arms (separated by 135°) were baited with a 

food reward. The spatial relationship between the baited maze arms and the room cues was 

maintained throughout training and the baited/un-baited arm configuration was counterbalanced 

between rats. At the beginning of each trial, the rat was placed in the cylinder in the center of the 

maze, where it remained for 15-30 seconds before starting the trial. To discourage the use of the 

experimenter as a cue, the direction in which the rat was placed in the cylinder was 

counterbalanced over trials. After the 15-30 seconds had elapsed, the rat was released and 

allowed to freely investigate the maze and search for the baited arms. Trials were terminated 

when the animal either located the baited arms and consumed the food reward, or after 5 minutes 

had elapsed. Once rats located and consumed the reward, they were returned to a transport cage 

for ~1 minute while the entire maze was cleaned with a non-toxic cleaning solution. The maze 

was cleaned and rotated 180° at the end of each day to discourage the use of intra-maze cues 

(e.g., local features and/or odors) between days.  
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Inactivation Probe. After acquisition, rats completed two probe trial blocks on the RAM 

using an un-blinded within-subjects cross design (Law & Smith 2012; Stackman et al., 2012). On 

day twelve, half of the rats received bilateral intracranial infusion of muscimol into the ATN 

(0.2-0.3ul at a concentration of 0.25ug/ul; Tocaris Bioscience), while the remaining rats received 

infusions of saline (0.2-0.3ul at a concentration of 0.9%). Infusions were administered by first 

gently restraining the rats, removing the dummy cannula, and then inserting the bilateral 33-

gauge infusion cannula. Infusions were performed through two 10uL Hamilton syringes held in a 

Harvard Apparatus ‘22’ syringe pump (Harvard Apparatus, MA). The infusions were delivered 

at a rate of 0.167/min for 1.5 min, infusion cannula remained in place for 30 sec after the 

infusions, and dummy cannula were then re-inserted. Each rat was returned to a transport cage 

for 30 min before being transported to the radial arm maze for the probe test. On day 13, all rats 

completed another trial block of radial arm maze testing to act as a recovery day, and on day 14, 

rats received a second intracranial infusion of muscimol or saline followed by a trial block in the 

radial arm maze using the same methods described above. On day 14, treatment conditions were 

reversed such that all rats received both muscimol and saline infusions. 

Scoring and data analysis. Performance measures included the percentage of correct 

trials, the number of errors, and search latency calculated for each animal during acquisition and 

probe testing, as previously described by Yoder & Kirby (2014). Briefly, an arm choice was 

counted when all four of the rat’s paws crossed the threshold of an arm. A correct choice was 

counted only if the rat approached and ate from a baited food cup. Error trials were categories 

into three subtypes: reference memory errors, working memory-correct errors, and working 

memory-incorrect errors. Reference memory errors occurred when a rat entered an unbaited arm 

or if they entered a baited arm without approaching and eating from the food cup. This partial 
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entry was classified as a reference memory error because the rat had made a choice (arm entry) 

that did not meet the criteria to be classified as a correct choice. Working memory-correct errors 

occurred when a rat re-entered an arm that had been previously baited. Working memory-

incorrect errors occurred when a rat re-entered an arm that never contained a reward. Latency 

was measured as the time elapsed from the beginning to the end of each trial. All measures were 

averaged across each trial block.  

Video records were evaluated for the search strategy used by rats during acquisition and 

probe testing. Three strategies were identified based on previous descriptions: spatial, serial, and 

mixed subtypes (Hodges, 1996; O’Leary and Brown, 2012; Yoder & Kirby, 2014). A search path 

was spatial if an animal’s last two arm choices were baited. A serial strategy occurred when an 

animal first visited a baited arm and then subsequently visited arms in a clockwise or counter 

clockwise fashion until they reached the second baited arm. A mixed strategy was used when 

animals searched arms in a nonsystematic pattern. Finally, video records from probe tests were 

scored for behaviors reflecting the horizontal head scanning movements previously described as 

“vicarious trial-and-error” (VTE). VTEs are characterized as side-to-side head movements 

directed toward the entry point of adjacent maze arms, but occur without an explicit arm choice 

(Bett et al., 2015; Bimonte & Denenberg, 2000; Brown & Cook, 1986; Redish, 2016). VTEs 

were scored when animals paused near the entry of a maze arm and appeared to investigate with 

at least their nose passing within ~2.5cm of the threshold of the arm. If an animal crossed the 

threshold with all four paws, a VTE was not counted. 

Acquisition measures were subjected to repeated measures analysis of variance 

(ANOVA) with trial block as within subject factors. A multivariate repeated measures ANOVA 

was used to test search strategy performance with strategy as between subject factors and trial 
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block as within subject factors. For the probe test, behavioral measures were subjected to paired 

t-tests (two-tailed). ANOVAs and t-tests were conducted using SPSS (23.0, SPSS Inc., Chicago, 

IL). Effect sizes for ANOVAs and t-tests were calculated using Cohen’s d (d) and partial eta 

squared (η2), respectively.   

Histology. At the completion of testing, rats were deeply anesthetized with sodium 

pentobarbital and were then transcardially perfused with saline, followed by a 4% formalin 

solution. The brains were removed from the skull and were post-fixed in 4% formalin for 24 

hours. The brains were then cryoprotected in a 30% sucrose solution for at least 24 hrs. A 

cryostat was used to cut 40um coronal sections through the ATN. Each section was mounted on 

glass microscope slides, dried, and stained with crystal violet before being cover-slipped. 

Bilateral placement of infusion cannula was examined under light microscopy.  

 

Results 

Histology. Histological analysis confirmed that the majority of cannula were placed 

within the ATN, particularly the anterodorsal and anteroventral subnuclei (n = 10). In one case, 

however, cannula placement was observed in the habenula, and in a second case, bilateral 

cannula were located within the boundaries of the mediodorsal thalamus. Because infusions in 

the latter two rats included adjacent subcortical regions, the data from these animals were 

excluded from further analysis. Figure 1 shows the results of histological analysis from the 

remaining 10 rats included in the behavioral analyses below.  

Acquisition. Figure 2 plots the percentage of correct trials, reference memory errors, 

working memory errors, and latency across radial arm maze training. A repeated measures 

ANOVA on pre-inactivation performance indicated that rats showed increasing measures of 
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percent correct, (F(10,90)=27.65, p<.001, η2=0.75), reduced reference memory errors, 

(F(10,90)=27.08, p<.001, η2=0.71), reduced working memory errors, (F(10,90)=22.23, p<.001, 

η2=0.54), and decreasing measures of latency, (F(10,90)=17.158, p<.001, η2=0.66), suggesting 

that by the end of training animals learned the task. Indeed, measures of the percentage of correct 

trails were significantly above chance performance (25%) on the final day of training (Mean + 

SEM: 68.92 + 3.77%; t(9)=11.67, p<.001). To evaluate the effects of surgical implantation on 

task performance, we compared the percent correct of our current group to the percent correct a 

previous preliminary group of non-implanted animals as a sham control and found no significant 

differences over days (F(5,10)=2.137, p=.208, η2=.810), suggesting that cannulation of the ATN 

did not cause deficits in spatial navigation on the radial arm maze.  

 Inactivation Probe Trials. Figure 3 plots the percentage of correct trials, reference 

memory errors, working memory-correct errors, working memory-incorrect errors, latency, and 

VTEs following the inactivation of ATN. In the probe trials following intracranial infusions, 

animals that received muscimol treatment demonstrated decreases in the accuracy of selecting 

the correct maze arms. This observation was confirmed by a significant reduction in the overall 

percentage of correct trials (t(9)=4.57, p=0.001, d=1.65), an increase in the number of reference 

memory errors (t(9)=-2.31, p=0.046, d=-1.04), and an increase in search latency (t(9)=-4.31, 

p=0.002, d=-1.26). Further, percent correct from the last day of acquisition and percent correct 

from the probe recovery day did not differ, t(9)=-.179,p=.862, d=0.088 suggesting infusions did 

not have long lasting effects on spatial navigation. We also observed a tendency for animals with 

muscimol infusions to perseverative their searches toward previously visited arms. Notably, in 

some cases, animals would alternate between two maze arms for up to 19 consecutive choices. 

The adoption of perseverative behavior by muscimol infused animals is captured by measures of 



www.manaraa.com

 

	10	
	

the number of working memory errors, which show a significant increase in the muscimol group 

compared to controls (working memory-incorrect: t(9)=-2.72, p=0.024, d=-1.15). On average, 

muscimol infusions tended to increase the number of working memory-correct errors (0.55 + 

0.26 errors/trial) compared to saline infusions (0.05 + 0.03 errors/trial), however, this difference 

failed to reach significance (t(9)=-1.84, p=0.098). It is noteworthy that animals in the muscimol 

group showed a greater tendency to perseverate choices toward incorrect arms (1.30 + 0.43 

errors/trial) compared to correct arms (0.55 + 0.26 errors/trial), further indicating that muscimol 

administration to the ATN resulted in a general failure in reference memory. Analysis of the 

number of reference memory errors across the 4 post-inactivation trials also failed to indicate a 

reduction in the number of errors (muscimol: F(3,27)=0.21, p=0.89; control: F(3,27)=0.16, 

p=.22), indicating a persistent impairment across probe testing.  

We also addressed the possibility that the impaired spatial performance by muscimol 

infused rats described above was due to an inability to execute the appropriate movements to 

guide behavior. We therefore quantified the number of VTE head movements made by rats after 

intracranial infusions. On average, we observed that control (1.85 + 2.34 VTEs/trial) and 

muscimol (2.00 + 4.65 VTEs/trial) animals performed a similar rate of VTEs per trial, and the 

similarity between the two groups was confirmed by a non-significant t-test (t(9)=-0.12, p=0.91). 

We reasoned, however, that a general measure of VTE performance by trial might be 

confounded by the fact that muscimol animals spent significantly more time on the maze per trial 

than control rats (see Fig. 3E). A disproportionate amount of time on the maze would possibly 

allow additional time to perform VTEs. We therefore normalized the number of VTEs for each 

rat by the time spent in the center of the maze (the only region of the maze that a VTE can be 

performed). This analysis revealed that muscimol animals made a slightly greater number of 
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VTEs/sec compared to controls (muscimol: 1.17 + 0.46; controls: 0.71 + 0.19); however, this 

mean difference failed to reach statistical significance (t(9)=-1.00, p=0.34). 

We also quantified the number of spatial, serial, and mixed search strategies expressed by 

rats during task acquisition as well as in the probe trials (Fig. 4). As expected, during training, 

we observed a significant interaction between strategies (F(1,9)=15.00, p=0.004, η2=0.63) with 

an increase in the number of spatial searches performed by rats (F(10,90)=13.27, p<0.001, 

η2=0.60), and a corresponding decrease in mixed strategies (F(10,90)=4.36, p=<0.001, η2=0.33). 

It was notable, however, that we failed to observe the use of serial strategies throughout testing, 

suggesting that the task demands in the present study favored spatial solutions rather than non-

spatial serial behavior. Muscimol infusions resulted in a significant reduction in the percentage 

of spatial strategies performed by rats (F(1,39)=10.19, p=0.003, η2=0.22), suggesting that the use 

of a spatial search strategy involves signals processed by ATN. A corresponding increase in the 

number of mixed behavioral search strategies was therefore observed after muscimol infusions 

(muscimol 35.0 + 8.97; control 22.5 + 6.03), however this mean difference failed to reach 

significance (t(9)=-0.832, p=4.27).  

 

Discussion 

The results of the present study support three novel conclusions regarding the role of the 

ATN in radially arranged environments. First, our findings demonstrated clear deficits in both 

spatial reference and working memory following inactivation of the ATN (see Fig. 3). 

Specifically, animals treated with muscimol failed to accurately select the two arms of the radial 

maze that were consistently rewarded over 11 days of pre-training, as indicated by a significant 

increase in the number of reference memory errors and decrease in the percentage of correct 
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trials during the probe test (see Fig. 3A and 3B). Further, muscimol inactivation produced a 

greater number of working memory errors which appear to be due, in part, to a large increase in 

the number of perseverative entries into incorrect arms (see Fig. 3D). Collectively these 

observations suggest that inactivated animals tended to make errors toward non-rewarded arms 

(i.e., reference memory errors), but also perseverated in making these errors throughout probe 

testing (i.e., working memory errors). 

A number of previous studies have reported spatial working memory deficits in the radial 

maze after ATN lesions (e.g., Aggleton et al., 1996; Beracochea et al., 1989; Mitchell, & 

Dalrymple-Alford, 2005), but the role of the ATN in reference memory in the radial maze has 

not received similar attention. Indeed, much of the previous work investigating the relationships 

above have utilized procedures that favor the acquisition of non-spatial, investigatory behaviors 

and working memory strategies. In these studies, animals were typically exposed to a maze in 

which all of the arms were baited, and spatial memory errors were simply scored as returns to 

previously visited arms within a given session. For example, Dubreuil and colleagues (2003) 

reported a tendency for rats to serially sample maze arms (e.g., visit arm 1, then arm 2, then arm 

3, etc.), suggesting that non-spatial strategies might be favored in this radial maze variant. In the 

present study, we utilized a radial maze procedure in which in which two maze arms were 

consistently baited in each daily training session; thus, the animal was required to learn a 

consistent relationship between spatial cues and the reward locations (Yoder & Kirby, 2014). 

The results of the present study support the conclusion that animals in this radial maze variant 

learned these spatial relationships by demonstrating a significant tendency to direct movements 

toward the reward arms by the end of training (i.e., a spatial strategy; see Fig. 4A). In contrast, 

the occurrence of serial search strategies was virtually non-existent throughout acquisition and 
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probe trials further suggesting that the current radial arm maze task promotes spatial search 

strategies. Additionally, ATN inactivated animals used a spatial search strategy at a lower rate 

than control animals.  

A second general conclusion of the present study is that extensive pre-training in the 

radial arm maze failed to ameliorate the effects of ATN inactivation on subsequent spatial 

performance. Previous studies assessing spatial reference memory in the Morris water task have 

been less clear regarding the influence of pre-surgical task acquisition. For instance, Sutherland 

and Rodriguez (1989) showed that large lesions of the ATN failed to impair spatial memory after 

extensive pre-lesion training, whereas Warburton et al (1999) reported the opposite pattern of 

results. Further, Stackman et al (2012) reported that some forms of spatial memory are retained 

in the water maze after post-acquisition muscimol inactivation of the ATN. Specifically, 

impairments were observed in the use of spatial information to guide swim trajectories toward 

specific directions in the pool, but swim paths toward absolute spatial locations within pool 

coordinates were spared. This finding suggests that pre-training may spare particular forms of 

spatial processing, but not spatial strategies reliant on generating a directional trajectory toward a 

goal location. Alternatively, circular arena findings from Stackman et al. (2012), Sutherland and 

Rodriquez (1989), and Yoder and Kirby (2014) that show a lack of deficits in spatial reference 

memory following impairment to the head direction signal might be due in part to the circular 

environment itself in contrast to radial environments. Because discrete directional decisions are 

not required to complete circular arena tasks, such as in radial tasks, spatial reference memory 

about goal locations might be spared. This speculation is supported in place cell literature where 

lesions of the ATN reduce the spatial specificity of hippocampal place cells but do not 

completely admonish their signal (Calton et al., 2003), suggesting that reference memory of 
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locations but not directions might be intact following head direction signal degradation. In 

contrast to studies conducted using the Morris water maze, Alexinsky (2001) reported that 

animals with sham and neurotoxic lesions of the ATN were impaired in radial arm maze 

navigation after extensive pre-lesion training on the task. It is notable, however, that in this study 

the post-surgical performance of control animals was relatively poor compared to pre-surgical 

performance. A possible explanation for this finding is that the delay between pre and post-

surgery, which was 2 weeks in duration, was sufficient to induce reference memory impairments. 

Thus, in the present study, we avoided this potential confound by surgically cannulating animals 

before training in the radial maze and using muscimol infusion procedures which allowed rapid 

inactivation of the ATN shortly (24hrs) after pre-training. Further, because there was no surgical 

recovery interval between acquisition and retention testing, the effects of neural compensation 

and covert pathological changes in other regions of the limbic system are limited (Dumont et al., 

2012; Jenkins et al., 2004).  

The mechanism by which the ATN may serve a role in spatial memory in the radial arm 

maze is poorly understood, but one long standing hypothesis has argued that the ATN and head 

direction cell activity plays a role in the establishment of spatial representations in the 

hippocampal formation (McNaughton et al., 1991; Sharp et al., 2001; Taube, 2007; 

Yoganarasimha et al., 2006). Certainly the fact that lesions of the ATN reduce the spatial 

specificity of hippocampal place cells (Calton et al., 2003), and abolish parahippocampal grid 

cells (Winter et al., 2015) seems confirmatory. In recent work, the ATN and head direction cell 

activity has also been linked to the fact that place cells and grid cells form unique spatial firing 

patterns in radially oriented environments (Derdikman et al., 2009; Fuhs et al., 2005; Grieves et 

al., 2016; Speirs et al., 2015). Specifically, the ATN may play a central role in disambiguating 
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spatial locations based on directional orientation (Clark et al., 2015; Grieves et al., 2016; 

Sanchez et al., 2016; Stackman et al., 2012), which would ultimately influence the accuracy of 

reference and working memory in the radial maze. Observations of increased activity dependent 

gene expression in anterior thalamic nuclei following training in the radial arm maze supports 

this hypothesis (Vann et al., 2000), but the effects of direct manipulations of the ATN on 

hippocampal spatial representation in radial environments is presently unknown. 

A final conclusion relates to the observation that rats with muscimol inactivation of the 

ATN continued to exhibit investigatory behaviors (Fig. 3F), in particular, arm checking 

behaviors in which animals direct their head movements towards the entrance of maze arms, and 

produce scanning head movements between adjacent maze arms. This behavior, also referred to 

as vicarious trial-and-error or VTEs (Brown & Cook, 1986; Redish, 2016; Tolman, 1939), has 

long been argued to serve a role in gathering environmental information, perhaps about the 

locations of relevant landmarks, and the establishment of spatial representations (O’Keefe & 

Nadel, 1978). Support for this notion comes from studies demonstrating that these head 

movements can be altered in rats after hippocampal lesions (Bett et al., 2015; Clark et al., 2005), 

and that declines in head movements after hippocampal damage can be correlated with spatial 

learning impairments (Hu & Amsel, 1995). Because the ATN has large reciprocal connections 

with the hippocampal formation, and contributes to the processing of spatial representations 

within the hippocampus, a reasonable hypothesis would be that the ATN may also contribute to 

the guidance of investigatory movements. Nonetheless, the lack of significant changes in VTEs 

after ATN inactivation in the present study fails to confirm this hypothesis. Further, our findings 

suggest that deficits in spatial reference memory and working memory after ATN disruption are 

not explained by alterations in head scanning behaviors and point to a potential functional 
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dissociation between the hippocampal formation and ATN. 

To summarize, the results of the present study indicate that the ATN are necessary for the 

expression of spatial reference memory, spatial working memory, and performance of spatial 

strategies in the radial arm maze. Further, the present study demonstrated that VTE behaviors are 

relatively intact after ATN inactivation, strongly suggesting that declines in reference memory 

and working memory after ATN inactivation are not explained by deficits in investigatory 

behaviors. Together, the results suggest that the ATN modulates not only the online guidance of 

accurate spatial behavior, but is also necessary for the expression of a previously acquired spatial 

representations in the radial arm maze.
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Figures & Captions 

 
 
 
Figure 1. A: Left: The anterodorsal thalamic nuclei (AD), anteroventral thalamic nuclei (AV), 

and stria medullaris (SM) are identified in an atlas plate from Paxinos & Watson, 1998. Right: 

Representative coronal section depicting bilateral infusion tracks through the ATN. Black 

arrowheads indicate track of infusion cannula. B: The individual placements of infusion sites are 
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indicated with black circles for 10 rats are presented against the atlas plates from -1.60 to -

2.12mm from bregma (Paxinos & Watson, 1998). Orange represents AD and grey represents 

AV.  

 

 
 
Figure 2. Results of radial arm maze task acquisition. A: Percentage of correct arm choices 

increased over trial blocks. B-C: Reference memory (RM) and working memory (WM) errors 

decreased across trial blocks. D: Latency to complete the task decreased across trial blocks. 

Mean ± SEM.  
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Figure 3. A: Percentage of correct arm choices was higher in control animals than in muscimol 

animals. B: RM error were significantly greater in muscimol animals than in control animals. C: 

Working memory-correct (WM-C) errors did not significantly differ, but note that on average 

muscimol animals made greater WM-C errors compared to controls. D: Working memory-

incorrect (WM-I) errors were significantly greater in muscimol animals than in control animals.  
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E: Latency to complete the task was significantly greater in muscimol animals than in control 

animals. F: Muscimol and control animals made a similar total number of VTEs per trial. Mean + 

SEM. 

 

 
Figure 4. Control and muscimol animals favored different search strategies during probe 

sessions. A: Animals favored a mixed search strategy during the first trial blocks, but ultimately 

favored a spatial search strategy by the end of acquisition. B: During probe trials, control animals 

favored a spatial search strategy while muscimol animals had no preferred search strategy. Mean 

+ SEM.
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